

Addigy[®] PA6/66-GF20 FR LS

Low Smoke Filament

Addigy® PA6/66-GF20 FR LS is one of few commercial filaments that meet norms EN 45545-2, NFPA 130 (ASTM E162, ASTM E662), SMP 800-C and FAR 25.853. Its certifications for flame, smoke and toxicity (FST) make it suitable for railway and other transportation applications.

The Low Smoke filament is a cost-efficient and easier-to-print solution for applications that need to meet European and North American railway norms. This innovative material can be printed easily on standard filament printers, eliminating the need for high-temperature printers. The proprietary formulation uses a non-halogenated flame retardant with reduced ecological impact, and the composition has been optimized to avoid typical smoke development and achieve the low smoke requirements of the European and North American standards.

The glass-filled material has a high heat deflection temperature.

Key benefits

- Passes standards EN 45545-2, NFPA 130 (ASTM E162, ASTM E662), SMP 800-C and FAR 25.853
- Non-halogenated flame retardant material
- Reduced flame spread, smoke density and toxicity
- Low levels of toxic fume emissions and smoke density allow for safe evacuation in the event of a fire
- Cost-efficient alternative that can be printed on standard FFF printers and does not require high-temperature printers
- Glass-filled material allows for superior thermal performance at elevated temperatures/heat deflection temperature (HDT)
- Reduced thermo-oxidative degradation
- Can be post-processed and painted

Applications

- Electrical in-train parts such as connectors, covers or enclosures, outlet boxes, panels
- Small electrical components such as cable guides, reading lights
- Other internal and external train applications, also visible parts
- Aerospace components

Technical Data

Mechanical properties

Property	Typical values	Units	Test method	Test specimen
Tensile stress at yield, 50 mm/min	-	MPa	ISO 527	Injection-molded
	-	MPa	ISO 527	3D-printed XY/flat at 240°C
	-	MPa	ISO 527	3D-printed XY/flat at 240°C
at -40 C	-	MPa	ISO 527	3D-printed XZ/on edge at 235°C
Tensile stress at break, 50 mm/min	46	MPa	ISO 527	3D-printed XY/flat at 240°C
at 40%0	52	MPa	ISO 527	3D-printed XY/flat at 240°C
at-40 C	53	MPa	ISO 527	3D-printed XZ/on edge at 235°C
Tensile elongation at yield, 50 mm/min	-	%	ISO 527	3D-printed XY/flat at 240°C
at -40°C	-	%	ISO 527	3D-printed XY/flat at 240°C
	-	%	ISO 527	3D-printed XZ/on edge at 240°C
Tensile elongation at break, 50 mm/min	-	%	ISO 527	Injection-molded
	2.5	%	ISO 527	3D-printed XY/flat at 240°C
at -40°C	2.1	%	ISO 527	3D-printed XY/flat at 240°C
	1.7	%	ISO 527	3D-printed XZ/on edge at 240°C
Tensile modulus (modulus of elasticity), 1 mm/min	3999	MPa	ISO 527	3D-printed XY/flat at 240°C
at -40°C	4056	MPa	ISO 527	3D-printed XY/flat at 240°C
	4876	MPa	ISO 527	3D-printed XZ/on edge at 240°C
Flexural modulus	5588	MPa	ISO 178	Injection-molded
Flexural strength	147	MPa	ISO 178	Injection-molded
Charpy impact notched	13.1	MPa	ISO 179	3D-printed XY/flat at 240°C

Flammability properties

Property	Typical values	Test method	Test specimen
UL 94 flammability rating	V-2 at 0.4mm	UL 94	3D-printed XY/flat at 240°C
	V-2 at 0.8 mm	UL 94	3D-printed XY/flat at 240°C
	V-2 at 1.6 mm	UL 94	3D-printed XY/flat at 240°C
	V-1 at 2.0 mm	UL 94	3D-printed XY/flat at 240°C
	V-0 at 3.2 mm	UL 94	3D-printed XY/flat at 240°C

EN 45545-2+A1 NORM

Property	Typical values	Units Test method		Test specimen
Oxygen index	33.6 at 4 mm	%	R22 - EN ISO 4589-2	
Maximum optical density (D _s max)	111.1 at 4 mm		R22 - EN ISO 5659-2, 25 kW/m2	3D-printed XY/flat at 240°C
	0.51 at 4 mm		NF X 70-100-1,NF X 70-100-2,600°C	

NFPA 130 NORM

Property	Typical values Test method		Test specimen
Radiant panel index (I $_{\rm s}$)	8 at 6 mm	ASTM E162-15b	
Optical density at 4 minutes (D _s)	94 at 6 mm	ASTM E662-18	3D-printed XY/flat at 240°C
Toxic gas generation	pass	Bombardier SMP 800-C	

FAR 25.853 NORM

Property	Typical values	Units	Test method	Test specimen
Burn length	20.3 (0.8)	mm (")	Vertical test – 12 seconds, FAR 25.853	
Flame time	6.1	S	Vertical test – 12 seconds, FAR 25.853	
Flaming time of drippings	0	S	Vertical test – 12 seconds, FAR 25.853	3D-printed XY/flat at 240°C
Burn rate	n/a (< 38.1 (1.5))	mm/min (in/min)	Horizontal test – 12 seconds, FAR 25.853	

Technical Data

Thermal properties

Property	Typical values	Units	Test method	Test specimen
Melting point	195	°C	ISO 11357, DSC ^b	
Glass transition temperature	-	°C	ISO 11357, DSC ^b	
Heat deflection temperature at 1.8 MPa (A)	114	°C	ISO 75	
Heat deflection temperature at 0.45 MPa (B)	168	°C	ISO 75	3D-printed XY/flat at 240°C

General properties

Property	Typical values	Units	Test method	Test specimen
Density	1293	kg/m³	ISO 1183	
Η	4.5			1% in H2O
Non-volatile-matter content	~30	%	ISO 3251	

a. Conventional Index of Toxicity. b. DSC = differential scanning calorimetry at 10°C/minute.

Note: results are generated according to the valid testing standards indicated above and the standard operating procedures used by the testing facilities.

More information at am.covestro.com

Covestro Deutschland AG Kaiser-Wilhelm-Allee 60 51373 Leverkusen Germany

solutions.covestro.com info@covestro.com

The manner in which you use our products, technical assistance and information (whether verbal, written or by way of production evaluations), including any suggested formulations and recommendations, is beyond our control. Therefore, it is imperative that you test our products to determine suitability for your processing and intended uses. Your analysis must at least include testing to determine suitability from a technical, health, safety, and environmental and regulatory standpoint. Such testing has not necessarily been done by Covestro, and Covestro has not obtained any approvals or licenses for a particular use or application of the product, unless explicitly stated otherwise. [EMEA only: If the intended use of the product is for the manufacture of a pharmaceutical/medicinal product, medical device1 or of pre-cursor products for medical devices or for other specifically regulated applications which lead or may lead to a regulatory obligation of Covestro, Covestro must explicitly agree to such application before the sale.] Any samples provided by Covestro are for testing purposes only and not for commercial use. Unless we otherwise agree in writing, all products are sold strictly pursuant to the terms of our standard conditions of sale which are available upon request. All information, including technical assistance is given without warranty or guarantee and is subject to change without notice. It is expressly understood and agreed by you that you assume and hereby expressly release and indemnify us and hold us harmless from all liability, in tort, contract or otherwise, incurred in connection with the use of our products, technical assistance, and information. Any statement or recommendation not contained herein is unauthorized and shall not bind us. Nothing herein shall be construed as a recommendation to use any product in conflict with any claim of any patent relative to any material or its use. No license is implied or in fact granted under the claims of any patent. These values are typical values only. Unless explicitly agreed in written form, they do not constitute a binding material specification or warranted values. To the best of our knowledge this product does not intentionally contain Antimony and therefore these substances are not expected to be present. The presence of analytically detectable traces, which have possibly been introduced via raw materials, auxiliaries and additives, cannot be excluded. Specific analyses to measure such traces have not always been performed on raw materials or final products. ¹ Please see the "Guidance on Use of Covestro Products in a Medical Application" document Edition: May 2022 · Printed in Germany